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Dynamics of vortices on a uniformly
shelving beach
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(Received 11 May 2001 and in revised form 25 February 2002)

Laboratory experiments are described which investigate the dynamics of a vortex
dipole moving in water towards a planar sloping beach inclined at an angle α to the
horizontal. Results are compared with those of a vortex ring model first developed
by Peregrine (1996). The vortices separate as they travel up the beach, eventually
moving in opposite directions and nearly parallel to the shoreline. The ranges of
conditions examined are 3◦ 6 α 6 45◦, 1× 103 6 Re 6 6× 103 and 0.05 6 Fr 6 0.14,
where Re and Fr are the on-slope Reynolds number and the Froude number of
the vortices, respectively. The minimum distance from the shoreline reached by the
vortices and their along-shore speed are in general agreement with the predictions
when, respectively, R∗i < 3 (where R∗i is the non-dimensional initial distance of the
vortices from the shore-line) and Re & 1500. The vortex ring model is likely to have
useful applications to the study of the dynamics of the near-shore zone.

1. Introduction
Horizontal dispersion and mixing in the ocean is frequently associated with the

dynamics of coherent vortices. This study was motivated by the desire to describe
the motion of vortices in a near-shore environment, where the sea surface and an
approximately planar sloping beach define a wedge of fluid in which the vortices
are moving. The Rossby number of the vortices, Ω/πf (e.g. Tritton 1988, p. 217,
where Ω is the angular velocity of the core, assuming rigid rotation, and f is
the Coriolis parameter), is � 1 and they are not affected by the rotation of the
Earth. Observations of such vortices are rare (but see Smith & Largier 1995), a
consequence of the limitations of the available measurement techniques. In contrast,
many numerical experiments have predicted how such vortices develop as a result of
instabilities of along-shore currents (e.g. see Dodd, Iranzo & Reiners 2000; Özkan-
Haller & Kirby 1999; Slinn, Allen & Holman 2000). Peregrine (1998) noted that
the surf zone is a highly turbulent region that continuously receives energy from
breaking waves and, since the flow there can be regarded as almost two-dimensional,
an inverse energy cascade may lead to the formation of coherent vortices. Recent
work by Buhler & Jacobson (2001) has shown how vortex dipoles may be generated
by an inhomogeneous wavetrain impinging on a barred beach. The vortex dipole is
then self-advected towards the shoreline.

A method of describing such vortices has been suggested by Peregrine (1996).
Consider a wedge formed by a horizontal plane, the sea surface, and one inclined at
an angle, α, to the horizontal, the seabed. The planes meet along a line, the apex of
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the wedge, which we shall call the shoreline. Circular vortex rings with zero swirl and
with axes lying along the shoreline satisfy conditions of zero flow normal to the two
planes, and consequently the parts of the vortex rings lying outside the wedge form
the ‘image’ system of the parts of the vortices in a ‘real’ water-filled fluid between the
sea surface and the seabed (Peregrine 1996, 1998; Thorpe & Centurioni 2000). The
interaction of two (or more) such vortices in a wedge is consequently identical to that
of the same number of smoke rings sharing a common axis. Hicks (1922) reported
the first systematic study on the interaction of pairs of vortex rings.

The present paper describes laboratory experiments designed to test the extent to
which this model of vortices may apply in reality and provide useful estimates of
vortex motion. In the experiments vortex pairs are directed up a sloping plane normal
to the shoreline. They subsequently separate and move apart roughly parallel to the
shoreline, and their speeds and positions are compared to predictions.

2. Theory
A circular line vortex with small but finite cross-section area and uniform ω/l inside

the core, where ω is the vorticity and l is the distance from the axis of symmetry,
moves, without deformation, along its axis with a finite and constant speed v, given
by
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(Fraenkel 1972; Saffman 1992, p. 199 equation 16). Γ is the strength of the vortex
(see Saffman 1992, p. 8 for a definition), r is the radius of its approximately circular
cross-section and R is the radius of the ring.

Consider two equal, non-viscous, thin-cored and co-axial vortex rings of radius Ri
and opposite sign so that they repel one another, separated by a distance si. As the
two vortices move apart the radii of the rings decrease (Lamb 1932, art. 164, describes
the opposite situation for which the two rings approach one another and the radii
increase). We wish to calculate the constant final radius of the rings, Rf , when they
have moved infinitely apart and therefore, since isolated, move in opposite directions
at an equal and constant speed (as given by equation (1)). This system is Hamiltonian
and therefore its kinetic energy, or Hamiltonian function, is conserved (Saffman 1992,
pp. 206–207 and equation 9):

Ei + E12
i = Ef, (2)

where Ei is the initial kinetic energy of the two isolated vortices, E12
i is the initial

interaction kinetic energy for the couple and Ef is the final kinetic energy of the two
isolated vortices. Note that when the vortices are far apart the interaction kinetic
energy term can be neglected, as shown later. Throughout the work, the subscripts
‘i’ and ‘f’ refer to the initial and final situations respectively. The kinetic energy of a
sector α of an isolated vortex ring with constant ω/l inside the core is given by (e.g.
Saffman 1992, p. 199)

Es(Γ , R, r, α) =
Γ 2R
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and therefore, if (2) is applied to the wedge of fluid of angular amplitude α and the
symmetry of the system is exploited, Ei and Ef , which now refer to the sectors of the
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rings, can be expressed as

Ei = 2Es(Γ , Ri, ri, α), (4)

Ef = 2Es(Γ , Rf, rf, α). (5)

If the two rings have an approximately circular cross-section, the initial and final
radius of the core are related by the equation of the conservation of volume of a
torus:

rf = ri

(
Ri

Rf

)1/2

. (6)

The interaction kinetic energy of the vortex pair, E12
i , considering again only two

sectors of angular amplitude α of the rings, can be calculated by the equation (e.g.
Saffman 1992, p. 207)

E12
i =

α

2π

[
π

∫
ω+ψ− dA+ + π

∫
ω−ψ+ dA−

]
, (7)

where ω+(−) is the vorticity of the positive (negative) vortex, ψ−(+) is the Stokes stream
function of the negative (positive) vortex and the integrals are restricted to the regions
containing the positive (negative) vorticity, i.e. over the core of the positive (negative)
vortex. The two surface integrals in (7) are calculated over any half-plane stemming
from the axis of symmetry (Batchelor 1967, p. 521, equation 7.2.11). Since the system
is axisymmetric and the two vortices are equal (but with opposite signs), the two
integrals in (7) are also equal, resulting in

E12
i = α

∫
ω+ψ− dA+ = α

∫
ω−ψ+ dA−. (8)

The Stokes stream function of, for example, a negative circular vortex filament, at a
generic point P = (x, ρ) in an axial plane, is (Lamb 1932, art. 161, equation 11)

ψ−(x, σ) = − Γ
2π

(l1 + l2)[K(λ)− E(λ)], (9)

where l1 and l2 are the distances of P from the two centres of the cross-sections, say
c1 = (si/2, Ri) and c2 = (si/2,−Ri), on the axial plane, that is,

l1 =
√

(x− si/2)2 + (ρ− Ri)2, (10)

and

l2 =
√

(x− si/2)2 + (ρ+ Ri)2, (11)

and λ is expressed as

λ =
l2 − l1
l2 + l1

. (12)

K and E are the complete elliptic integrals of first and second kind, respectively.
If the initial distance between the two vortices, si, is large enough to neglect the
variations of ψ− over the area of integration, which is a good approximation if
si � ri, and using the definition of strength, equation (8) becomes

E12
i = α

∫
ω+ψ− dA+ ≈ αψ−

∫
ω+ dA+ = αψ−Γ . (13)

The explicit form of the interaction kinetic energy is obtained by substituting (9),
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calculated for example at the point (−si/2, Ri), into (13), that is,

E12
i = −αΓ

2

2π
(si +

√
s2i + 4R2

i )[K(λ)− E(λ)], (14)

where λ is now given by

λ =

√
s2i + 4R2

i − si√
s2i + 4R2

i + si
. (15)

The interaction kinetic energy of the two rings, equation (14), tends to zero with λ,
which is equivalent to si becoming infinite. In other words, vortices that are very far
apart have zero interaction kinetic energy. This justifies the fact that the right-hand
side of (2) does not contain a term analogous to (14). Substituting (4), (5) and (14)
into (2), we obtain
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where rf has been eliminated with (6). Equation (16) is independent of Γ , the strength
of the vortices, and of α, the angular amplitude of the wedge of fluid. It relates the
final radius of the rings, Rf , to their initial radius, Ri, their initial distance, si, and the
initial radius of their core, ri.

Hicks (1922) has given the equation for the trajectory followed by two equal vortex
rings with opposite sign. The same result can be obtained from equation (16) if we
observe that, for example, the left-hand term must be constant throughout the motion
of the vortices. The constant is determined by the appropriate initial conditions and
the path can be computed numerically from (16) with the aid of (6) to eliminate the
dependence from the radius of the cross-section.

These results, namely equations (1) and (16), apply to complete vortex rings as well
as to circular sectors of them in a wedge of fluid, or, equivalently, to our idealized
‘beach’. Therefore, we have estimates of the distance of the vortex centres from the
shoreline and their along-shore speeds when they are far apart. Equations (1) and
(16) are, however, valid only if two rigid planes with no associated boundary layers
bound the wedge of fluid. If the upper surface is free, a cylindrical body of fluid
with circular cross-section of radius r in solid-body rotation with angular velocity Ω
(i.e. with vorticity ω = Ω/2, and therefore strength Γ = πωr2) produces a depression
at the centre of ( 1

8
π2g)Γ 2/r2, where g is the acceleration due to gravity. A Froude

number, defined as

Fr =
Γ 2

8π2gr2h
(17)

(e.g. Tritton 1988, p. 95; Thorpe & Centurioni 2000), where h is the characteristic
water depth, must therefore be � 1 if the rigid-surface assumption is valid.

3. The apparatus and the experiments
Experiments were carried out in the Perspex tank sketched in figure 1 (Centurioni

2000). A wedge of free-surface water was created by installing a glass panel, a ‘beach’,
inclined at an angle α to the horizontal (with α ranging from ∼ 3.5◦ to ∼ 45◦).
Barker & Crow’s (1977) design of the vortex generator was used (see Centurioni
2000 for more experimental details). The dipoles, generated over the flat bottom,
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Figure 1. The experimental tank. The sketch shows a side view. The tank width is 1470 mm.
AF = 970 mm, AA′′ = 250 mm, DE = 120 mm, EF = 160 mm, CD = 110 mm. The width of the
sloping plane, B′C, is varied together with BB′ to obtain different inclinations, α. The vortex
generator is in the middle of the longest side of the tank. A metallic frame holds a mirror at 45◦ to
the horizontal. The 50 Hz shutter video camera (Cohu Cosmicar TV zoom lens, 8–48 mm f1.2 and
Rainbow TV zoom lens H6X8–II, 8–43 mm f1.0) points at the mirror to record a view from above
of the water surface. Further details are given in Centurioni (2000).

progress at 90◦ towards the shoreline, the intersection of the water surface with the
beach. The vortex generator was driven by a weight sliding over a lubricated sloping
plane so that the pushing plate of the vortex generator moved with approximately
constant speed. A strong solution of yellow fluorescein was injected into the channel
of the vortex generator immediately before each run to make the vortices visible.
The images, recorded on tapes with a 50 Hz shutter video camera, were used to
measure the position of the centre of the vortices. The particle image velocimetry
(PIV) technique (Adrian 1991) was also used to: (a) visualize features of the flow; (b)
measure the position of the vortices; and (c) measure the velocity (and vorticity) field.
Before each experiment, the surface of the fluid was seeded with white granules of
the astyrene/acrylate interpolymer Pliolite AC 80 with diameters in the ranges 500–
710 µm or 710–1000 µm. The velocimetry analysis was performed with the software
DIGIMAGE (Dalziel 1993). Tables 1 and 2 show the range of slope angles and off-
slope depths used for the experiments with dye and with particles. The constriction of
the lateral walls should result in an offshore speed of the vortices of about 10−1 cm s−1.
This estimate is based on a strength of the dipole Γ ∼ 150 cm2 s−1, separation of the
vortices s ∼ 50 cm and distance from the shoreline R ∼ 15 cm.

Figure 2 shows a time series of pictures from an experiment with fluorescein. The
motion of the dipole can be divided in four main phases: (i) after the generation, at
t = 0, and while on the flat bottom, the vortices move parallel to each other and with a
slowly increasing separation along a straight path (0 < t < 4 s); (ii) when the vortices
meet the slope, at t = t1 (∼ 6 s), while still progressing towards the shoreline, they
separate more rapidly until they reach a minimum distance (Rf) from the shoreline
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Exp. α (deg.) h (cm) Γi (cm2 s−1)

1 3.5 2.7 94± 36
2 5.5 2.5 101± 32
3 5.5 4.5 105± 33
4 7.0 2.5 79± 34
5 7.0 4.5 129± 41
6 8.5 2.5 89± 33
7 8.5 4.5 106± 28
8 10.0 2.5 96± 29
9 10.0 4.5 134± 39

10 12.0 2.5 80± 31
11 12.0 4.5 104± 28
12 18.0 4.5 114± 34
13 20.0 4.5 117± 40
14 45.0 4.5 104± 37

Table 1. Values of the nominal slope angle, α, and the nominal water level, h (the depth of the
water at the flat bottom region). For this set of experiments fluoroscein was used as tracer. Γi, the
initial strength is defined by (18).

Exp. α (deg.) h (cm) Γi (cm2 s−1)

15 3.5 2.7 127± 18
16 5.5 2.5 89± 10
17 5.5 4.5 N/A
18 7.0 2.5 114± 20
19 7.0 4.5 188± 22
20 8.5 2.5 107± 13
21 8.5 4.5 160± 20
22 10.0 2.5 77± 11
23 10.0 4.5 201± 9
24 12.0 2.5 89± 14
25 12.0 4.5 133± 13
26 18.0 4.5 93± 11

Table 2. As table 1, for the PIV experiments. Γi is calculated from vorticity measurements
(see the Appendix).

at t = t2 (∼ 14 s); (iii) then the vortices move parallel to the shoreline and apart from
each other (14 < t < 34 s); (iv) at t = t3 (∼ 34 s) they start to move towards deeper
water. For vortices impacting on a vertical wall similar stages of development occur
(Barker & Crow 1977; van Heijst & Flor 1989; Orlandi 1990). The offshore movement
of the vortices (stage iv) is referred to as rebounding and is seen by comparing the
two images in figure 2 at t = 28 s and t = 46 s. Maximum rebound speeds are typically
0.3 cm s−1, and always larger than the speeds of the off-shore motion associated with
the impermeable lateral walls discussed earlier. The four phases can be identified in
figure 3, where the position of the two vortices is plotted together with the path
followed by two thin-cored sectors of vortex rings calculated numerically from (16).

Because of the diffusion of the fluorescein, the details of the centres of the vortices
are lost in the first few seconds, making the subsequent identification of their positions
difficult. Streak photographs give a clearer view of the flow at the fluid surface as
shown in figures 4 and 5. The trajectories of the particles provide information about
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t = 0 s Generator
Flat bottom

Sloping bottom
Slope edge

Shore
10 cm

t = 8 s t = 28 s

2 s 10 s 34 s

4 s 16 s 40 s

6 s 22 s 46 s

Figure 2. The evolution of a vortex dipole (experiment 4 in table 1) progressing over the flat
horizontal bottom (from t = 0 s to t1 ∼ 4 s) and subsequently over the planar slope. The images
are a plan view of the flow from above. The positions of the shoreline and of the edge of the slope
are indicated in the first frame. The vortices are coloured with fluorescein and a black background
was used to enhance the contrast. These images were obtained after: (a) the use of an interlace
filter; (b) the subtraction of the background (as recorded before the run); (c) the conversion to
negative. The vortices reach the minimum distance from the shoreline at t2 ∼ 14 s. Rebounding
starts approximately at t3 ∼ 34 s. The water depth at the flat bottom is (2.7± 0.1) cm and the angle
of the planar slope to the horizontal is α = 7.0◦ ± 0.1◦. The strength of the incident dipole, as
calculated from its speed over the flat bottom, is Γ = (79± 34) cm2 s−1. The pictures show only part
of the domain.

the structure of the flow. The secondary vortices, marked by filled arrows, contribute
to the rebounding process.

There was evidence that the flow associated with the vortices was generally turbu-
lent. The series of pictures in figure 2 show how the outer border of the dipole passes
through different phases, starting with an apparently smooth laminar flow during the
roll-up of the vortices (at t = 2 s), which becomes irregular (for t > 6 s) and eventually
laminar again as the fluid slows down (for t > 22 s). The inner core of the vortices can
also be turbulent. Small eddies, indicated by hollow arrows, appear at the surface and



218 L. R. Centurioni

Plan view from above

Vortex generator

Flat bottom

Edge of the slope

Planar sloping bottom

Shore

40

30

20

10

0
–40 –30 –20 –10 0 10 20 30 40

Side view
h = 2.5 cm

W
at

er
 s

ur
fa

ce

α = 5.6°

x (cm)

y 
(c

m
)

R
eg

io
n 

I

R
eg

io
n 

II

Rf

R
eg

io
n 

II
I

R
eg

io
n 

IV

t = t3

t = t2

t = t1

t = t0

Figure 3. The position of the two vortices (experiment 2, table 1). The planar slope is at an angle
α = (5.6 ± 0.1)◦ to the horizontal. The water depth at the flat bottom, h, is (2.5 ± 0.1) cm. The
position is marked every 0.4 s before the centre of the vortices meets the slope and 0.8 s afterwards.
The three vertical dashed lines define four regions in which the vortices behave differently (only the
right-hand side has been marked). When the vortices are in region I, they progress on a straight
path and their separation is constant or slowly increasing. When the vortices enter region II, they
are over the sloping bottom and their separation increases as they progress towards the shoreline.
Region III is characterized by the minimum position (Rf) of the vortices from the shoreline. Finally
(region IV), the secondary vortices (not shown) generated by the viscous interaction of the main
flow with the boundary become strong enough to move the primary vortices offshore (rebounding,
but the lateral walls may contribute to it). The path followed by two thin-cored sectors of vortex
rings (thick dashed line) is superimposed and was calculated by solving numerically (16) with the
following initial conditions: Ri = 26.9 cm, si = 6.8 cm and ri = 3.4 cm. The dependence on the radius
of the cross-section was eliminated with (6).

near the centre of rotation in figure 4, between t = 6 s and t = 12 s. After the dipole
crosses the edge between the flat bottom and the slope, the vortices, so far circular
and with only one centre of rotation, change shape and appear to have two distinct
centres of rotation. Far from the centres of rotation the streamlines are elliptical (with
eccentricity e ∼ 0.5 at t = 6 s to e ∼ 0.7 at t = 10 s). At t = 16 s the streamlines in the
proximity of the centre of the vortices again become almost circular.

4. Measurements
In the experiments with fluorescein the position of the centre of each vortex was

measured from its image, and its strength was computed (see table 1) from its
relationship with the speed of a vortex dipole over a flat bottom:

v =
Γi

2πsi
(18)

(Batchelor 1967, p. 531) where Γi is the strength of the dipole and si is the distance
between the centres of the two vortices.

The PIV technique is ideal for generating streak photographs but involves bias if
used to measure the position of the centres of the vortices and correction is needed
(see the Appendix). The total amount of vorticity at the surface of the fluid measured
with the PIV experiments (integral (A3) estimated with a vorticity threshold of 0 and
separated into four components, two for the main vortices and two for the secondary
vortices) was used to normalize (we considered 90%, 95% and 99% of the total
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t = 0 s

Generator

Flat bottom

Sloping bottom

Slope edge

Shore
10 cm

t = 10 s t = 24 s

2 s 12 s 30 s

4 s 14 s 36 s

6 s 16 s 42 s

8 s 18 s 48 s

Figure 4. A time series of streak photographs in a plan view from above (PIV technique, experiment
15 in table 2). The exposure time for frames from 0 s to 16 s was ∼ 0.8 s, ∼ 1.6 s from 16 s to 24 s
and ∼ 3.2 s from 26 s to 30 s. The images do not show all the particles used to seed the fluid but
only those that satisfied criteria imposed by the PIV analysis. The water depth at the flat bottom
is (2.7 ± 0.1) cm and the angle formed by the planar slope with the horizontal is α = (3.4 ± 0.1)◦.
The strength of the dipole measured over the flat bottom is Γ = (127± 18) cm2 s−1, and decreases
to Γ = (90± 13) cm2 s−1 when the vortices move parallel to the shoreline. Hollow arrows mark
multiple centres of rotation in the core of the vortices. Weak secondary vortices, marked by filled
arrows, develop. The images show only part of the domain.

vorticity) the calculated strengths of the main and secondary vortices. The relative
accuracy of the vorticity field at the water surface measured by the PIV technique
was taken as 10% (Linden, Boubnov & Dalziel 1995). The average time series of
the normalized strengths were calculated. The initial strength of the dipole Γi was
averaged over an interval, typically about 2 s, centred around t1, the instant at which
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t = 0 s
Generator

Flat bottom

Sloping bottom
Slope edge

Shore

10 cm

t = 8 s t = 16 s

2 s 10 s 18 s

4 s 12 s 20 s

6 s 14 s

Figure 5. Streak photographs from experiment 23 in table 2 as in figure 4. The exposure time
for frames from 0 s to 6 s is ∼ 1 s and for frames from 8 s to 20 s is ∼ 2 s. The water depth at
the flat bottom is (4.6 ± 0.1) cm and the angle formed by the planar slope with the horizontal
is α = (9.8 ± 0.2)◦. The strength of the dipole over the flat bottom is Γ = (201 ± 9) cm2 s−1 and
decreases to Γ = (186 ± 13) cm2 s−1 when the vortices move parallel to the shoreline. The images
show only part of the domain.

the vortices cross the edge, at a horizontal distance Ri from the shoreline, between
the flat bottom and the planar slope (table 2). Γf , the strength of the vortices at the
minimum distance from the shoreline, Rf , was also estimated and ranged between
71 cm2 s−1 and 185 cm2 s−1).

Care was taken to obtain estimates of the initial radius of the vortices. A parameter,
r99, proportional to the area S99 containing 99% of the total vorticity,

r99 =

√
S99

π
, (19)

was computed. This represents the radius of the core of the vortex if the vorticity
is contained in a circular surface. Similarly, we defined and computed r90 and r95.
The three time series were averaged into one, from which estimates of the radii,
ri and rf , were taken, respectively, when the vortices were at distances Ri and Rf
from the shoreline; ri ranged from 4.4 cm to 6.1 cm and rf ranged from 6.8 cm to
11.1 cm. The radius of the core of the secondary vortices was estimated in a similar
way.

The minimum distance of the vortices from the shoreline during the along-shore
motion (phase iii, see e.g. figure 3), Rf , was measured from the averaged path of
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Figure 6. (a) The minimum distance from the shoreline reached by the vortices (Rf) versus the
distance of the edge of the planar slope from the shoreline (Ri) in the horizontal plane. (b) Averaged
along-shore velocities of the vortices, v, versus the ratio of the strength (Γf) to the minimum distance
of the vortices from the shoreline (Rf).

the positive and negative vortices, and values are shown in figure 6(a), plotted
against Ri. We computed the corresponding speed v of an isolated vortex mov-
ing over the planar slope in the direction parallel to the shoreline, but in the
PIV experiments only. Values are shown in figure 6(b), plotted against the ratio
Γf/Rf .

5. Comparison of the inviscid theory with observations
We now compare the measured values of Rf with the predictions of (16).

The distance between the vortices, si, was used to define the non-dimensional
quantities:

R∗i =
Ri

si
, r∗i =

ri

si
, R∗f =

Rf

si
. (20a, b, c)
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Figure 7. Solutions of (21) for r∗i in 0.05 intervals between 0.2 and 1.3. The condition R∗i = 1 means
that the initial radius of the rings is equal to their initial separation and the condition r∗i = 0.5
(bold line) means that the initial radius of the cross-sections of the vortices is half their separation.

Equation (16) becomes

R∗i

(
log 8

R∗i
r∗i
− 7

4

)
− (1 +

√
1 + 4(R∗i )2)[K(λ∗)− E(λ∗)]

= R∗f

{
log

[
8
R∗f
r∗i

(
R∗f
r∗i

)1/2
]
− 7

4

}
, (21)

with,

λ∗ =

√
1 + 4(R∗i )2 − 1√
1 + 4(R∗i )2 + 1

= λ. (22)

Equation (21) was solved numerically for R∗i ∈ [1, 6] and r∗i ∈ [0.2, 1.3] (figure 7). The
relationship between R∗f and R∗i becomes less sensitive to r∗i when the latter increases
and R∗i is small. Since we could not measure ri in the experiments with fluorescein
we started with the assumption r∗i = ri/si = 0.5 for all the experiments. The results,
plotted in figure 8(a), show that for almost all the experiments except numbers 1 and
14, for which the agreement is remarkable, the theoretical predictions systematically
overestimate the observations (although the majority of the experimental data are
consistent with the predictions if the error bars are taken into account). The ratio µ,
defined as the relative difference between the final theoretical kinetic energy and the
final experimental kinetic energy, that is,

µ =
Ef(R

∗
i , R

∗
f,t, r

∗
i )− Ef(R∗i , R∗f,e, r∗i )

Ef(R
∗
i , R

∗
f,t, r

∗
i )

(23)

(here Ef is the term on the right of (21), R∗f,t is the non-dimensional final distance
from the shoreline predicted by (21) and R∗f,e is measured from the experiments)
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Figure 8. The experimental non-dimensional final distance from the shoreline, R∗f , plotted as a

function of the initial non-dimensional distance from the shoreline, R∗i , and compared with the
predictions of equation (21). In (a) ri = 2si, whilst in (b) ri is the measured value (PIV experiments
only). The numbers relate to experiments listed in tables 1 and 2.

was used to quantify the agreement between theory and observations since µ = 0
when R∗f,t = R∗f,e. The ratio µ was always positive and averaged 0.5. By restricting
the analysis to the PIV experiments we were able to use the measured values of ri.
The improved agreement, figure 8(b), is confirmed by an average absolute value of µ
of 0.3.

The speed of the vortices during the along-shore motion was compared with the
predictions of (1). The analysis was restricted to the PIV experiments since only then
were we able to measure the strength and the radius of the vortices on the slope.
Equation (1) can be rewritten as

v =
Γf

4πRf

{
log

8

εf
− 1

4
+ ε2f

[
−3

8
log

8

εf
+

15

32

]
+ o

(
ε4f log

8

εf

)}
, (24)
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Figure 9. The ratio of the observed and theoretical along-shore speed of the vortices (respectively,
vexp and vth) plotted as a function of the Reynolds number, Re. Comparison of the averaged
experimental data with: (a) the predictions of equation (24); (b) the predictions of Norbury’s (1973)
model. The agreement between theory and experiments is, in both cases, within the error bounds
when Re > Reb, with Reb ∼ 1500.

where

εf =
rf

Rf
. (25)

Equation (24) is valid if εf � 1 (Fraenkel 1972; Saffman 1992, pp. 195–201) and, if
applied to the wedge of fluid, suggests that the along-shore speed of the vortices is
independent of the angle of the planar slope. Norbury (1973) calculated the speed of
a family of rings ranging from thin cored rings (ε = 0.1) to Hill’s spherical vortices
(ε =

√
2), thus including the case in which the condition εf � 1 is violated, as it is in

our experiments where εf ranges from 0.5 to 0.7. Figure 9 shows the ratios between the
experimental speed and either (a) the predictions of equation (24) or (b) Norbury’s
(1973) model plotted as a function of the Reynolds number, here defined as

Re =
Γf

rf

hs

ν
, (26)

where hs is the local water depth and ν = 0.011 cm2 s−1 is the kinematic viscosity
of water (e.g. Batchelor 1967). Both models overestimate the experimental data for
Reynolds numbers less than Reb, with Reb ∼ 1500, but the agreement is within the
error bounds of the estimated values for larger values of Re.
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6. Discussion
Figure 8(b) suggests that the agreement of the experimental data with the theory

deteriorates for values of R∗i exceeding 3 (experiments 23, 16b, 21, 19 and 15, although
the agreement is still within the error bounds), where predictions of the length Rf
underestimate the observations. These are the experiments in which the vortices have
travelled for longer across the bathymetric contours and for which bottom friction
effects may be important. These are also the experiments for which the width of the
slope in the horizontal, R∗i , is largest and for which the vortical fluid is contained
almost entirely in the wedge region during the along-shore motion. Our theory is
valid when the sloping plane extends to infinity. However, the experiments show that
even when part of the vortical flow is outside the wedge region during the along-
shore motion, the agreement is within the estimated errors. Furthermore, experiments
23, 21, 19 and 15 have the largest initial Froude numbers (0.1 6 Fr 6 0.3 for the
PIV experiments), which indicate the most significant departures from the rigid lid
approximation.

Equation (16) requires that the strength of the vortices is conserved and the radius
of the core is governed by (6). Time series of these two parameters show that up
to 30% of the initial circulation of the main vortices is lost before they become
well-separated from one another (the largest losses are observed when Re . 1500)
and that rf cannot be completely explained by (6). In addition, viscosity and turbulent
bed friction are a likely cause of the observed secondary vortices (figures 4 and 5)
that extract energy from the main vortex dipole. If we write Γf = ηΓi (in which η < 1
represents a loss of strength) and (6) is not used, (21) may be rewritten as

Ri

[
log

(
8Ri
ri

)
− 7

4

]
−(si+

√
s2i + 4R2

i )[K(λ)−E(λ)] = η2Rf

[
log

(
8Rf
rf

)
− 7

4

]
. (27)

This holds as before if energy is not dissipated or transferred to other motions. The
energy associated with the observed secondary flow, estimated using the formula for
the kinetic energy for a Hill’s spherical vortex (e.g. Saffman 1992, p. 199) is found
to be about 1% of the estimated initial energy of the system (i.e. the left-hand
term of (2)), and can sensibly be neglected in the energy balance. Equation (27) has
limited applications since it appears difficult to predict η and r∗f in terms of the initial
conditions, or, in other words, to model the evolution of the vorticity, as discussed by
Buhler & Jacobson (2001) who refer to the case of a horizontal bottom. The presence
of a sloping bottom adds additional complexity. However, if measured values of η
and rf are used, (27) can serve as a test for these ideas, for then µ averages 0.2
(ranging from 0.007 for experiment 18 to 0.38 for experiment 21).

With regard to the along-shore speed of the vortices (figure 9), it is difficult to find
anything other than a dependence on the Reynolds number as an explanation of
the differences between observations and predictions. The on-slope Froude number
of the vortices (ranging from 0.05 to 0.14) does not appear to have any influence.
A dependence on other factors, such as the slope angle, is possible, although, given
the design of the experiments, we were unable to test this hypothesis, which remains
open to further research. The conclusion is ‘robust’ in that it is not sensitive to the
definitions of the strength and radius of vortices – the results obtained for the 90th,
95th and 99th percentiles, equation (19), were all consistent – nor it is sensitive to the
time interval used for the averaging operations.

The theory presented here requires the flow to be two-dimensional, i.e. to lie entirely
in planes passing through the shoreline, the common axis of the image vortex rings.
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However, vertical motions were observed and consisted mainly of (a) a vortex with
its horizontal axis at the forefront of the dipolar structure, which was observed to
dissipate once the vortices start to move apart and (b) upward vertical motions of
the order of ∼ 1 cm s−1 inside the core of the vortices during phase (i) (flat bottom).
The vortex generator may be responsible for (a), which in turn might be responsible
for some of the differences between theory and observations seen in figure 8(b).
Given the transient character of this flow structure however, it seems unlikely that
this should affect the analyses of the along-shore speeds (the use of a tank with a
rigid lid, see Barker & Crow 1977, might lead to the elimination of this horizontal
vortex, although requiring a more complicated apparatus). The motions inside the
vortex core (b) certainly play a role in modifying the vorticity distribution. The PIV
technique as used here is limited in that it can only look at the surface of the fluid.
These vertical motions are probably responsible for an increase of the radius of the
cores of the vortices beyond that predicted by equation (6). Since the rate of change
of the radius of the vortices is highest at the beginning of the experiments we suggest
that vertical motions may be relatively unimportant in the analysis of the along-shore
speed of the vortices, v, while they may play a role in Rf .

Our formulation of the problem is based on a theory valid for thin-cored rings for
which the ratio ω/l is constant in the core. Our experiments suggest that the vorticity
distribution has a maximum roughly coincident with the position of the stagnation
point and a bell shape. Fraenkel (1970, 1972) has shown that for a form of the
vorticity distribution with a maximum at the stagnation point, the parameter −1/4
in (1), obtained for constant ω/l, increases to 0. A more detailed investigation of the
agreement between the theory and the experiments will require a better knowledge of
the distribution of ω.

7. Conclusions
A theory is proposed which is useful in describing the motion of an inviscid and

two-dimensional vortex dipole in a wedge of fluid. Laboratory experiments were
carried out to test its validity as a vortex dipole propagates into shoaling water.

The flow followed qualitatively the same phases of evolution as those of a vor-
tex dipole approaching a vertical wall at normal incidence (Barker & Crow 1977).
Rebounding was observed, with typical speeds of about 0.3 cm s−1, although a con-
tribution from the rigid lateral walls may be envisaged. The flow was generally
three-dimensional.

The comparison of the experiments with the predictions of the final distance from
the shoreline (R∗f , equation (21)) shows an agreement that is generally within the
experimental errors. If the measured values of the initial radius of the vortices are
used the agreement is always within the error bounds and remarkably good when
R∗i is less than 3. When the along-shore speed of a vortex is compared with the
predictions of the vortex-ring theory the agreement is within the experimental errors
if Re is greater than about 1500, that is, when the losses of strength of the main
vortices are lowest.

The experimental results show that the vortex-ring theory provides accurate pre-
dictions of along-shore propagation of vortices, especially at high Reynolds numbers,
and may therefore be useful in interpreting observations in the surf-zone, as previously
suggested. Many aspects deserve further research, such as the decay of a viscous vortex
in the presence of bottom friction on a sloping plane (see Buhler & Jacobson 2001).
Experiments conducted with a wider range of slope angles and Reynolds numbers
would provide further tests and insights into the limitations of the theory.
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Appendix
The centre of rotation seen by an observer fixed with respect to the tank (the

apparent centre of rotation) differs from the one seen by another observer moving
(but not rotating) with the vortex since the first will see the superposition of the
rotational motion around the centre and the translational motion of the vortex
whilst the second sees only the rotation of the vortex. The distance between the
two centres depends on the translational speed of the vortex and on its vorticity
distribution. Saffman (1979) studied a similar situation. He calculated the trajectories
of the apparent centre of rotation, of the true centre of rotation and the changes in
shape for a symmetric and two-dimensional vortex dipole approaching a vertical wall.
The true centre of rotation, or centroid, of the two-dimensional vortex, say (x0, y0), is
defined as (Saffman 1979)

x0 =

∫ ∞
0

∫ ∞
0

yω dx dy

Γ
, (A 1)

y0 = −

∫ ∞
0

∫ ∞
0

xω dx dy

Γ
, (A 2)

where ω(x, y) is the vorticity and Γ is the strength of the vortex, that is,

Γ =

∫ ∞
0

∫ ∞
0

ω dx dy. (A 3)

From the vorticity field (PIV analysis) we estimated, using finite sums, the integrals
(A 1), (A 2) and (A 3). To do this one possibility is to define a priori the regions of the
fluid containing the vortices and then estimate the integrals over this area. A second
possibility is to consider only the vorticity values above, for positive vorticity, or below,
for negative vorticity, a certain threshold and then repeat the procedure for a number
of thresholds. We used the second method, briefly outlined below, since it does not
require a definition of the boundary of the vortices. The integrals were estimated for
the following set of thresholds: ±12.0 s−1,±11.9 s−1, . . . ,±0.1 s−1,±0.05 s−1, 0 s−1. Since
the flow, at least at the surface, is approximately symmetric throughout the duration
of the experiments (figures 2, 4 and 5), the fluid domain was split in two regions
along the axis of symmetry of the flow (x = 0 in figure 3). For each threshold value
the vorticity (and the regions) forming the two main vortices and the two secondary
vortices was selected. The resulting 244 trajectories were averaged into one single
path. The same procedure was used to track the movement of the secondary vortices.
Among all the experiments, the greatest difference between the two measurements of
Rf , that is from manual analysis of streak pictures and from the integral method just
described, was (16± 3)%.
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